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Abstract: The problem of determining a minimum energy control for a dynamically
interconnected set of p single-input single-output finite-dimensional linear time-
varying dynamical systems, for which the outputs are constrained to assume prescribed
values at different points in time is considered. It is shown that the solution
(optimal controller) is obtained by performing a linear operation on an appropriate

vector-valued generalized interpolating spline.
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1. Introduction

This note presents a result developed in [1]. 1t shows how the solution to
a class of minimum energy control problems with output constraints is related to
interpolation by generalized splines.

For complete generality, we consider a large-scale system consisting of p

linear time-varying mth

order differential dynamical systems interconnected by a
linear time-varying dynamic compensator (see Fig. ). For such a composite system,
we show that the optimal solution (trajectory) in the space of outputs appears
as a vector-valued generalized L spline, where L is a matrix of high order
differential operators, satisfying the output constraints; and we calculate the
corresponding minimum energy control function by applying the operator L to such
a spline. One of the consequences of this study of ours is the genera]izatibn
of splines arising from a single high order differential operator £ to splines
generated by a pxn matrix L of mth order differential operators, as we have
indicated above.

While minimum energy control problems have been discussed at length in
the control theory literature (see, for example, [2] and [3]), the main point
of the present note is simply to establish the connection between these control
theory results and those in spline approximation (see, for example, [4] and [5])
which seemingly were developed in a separate context. It is believed that such
a connection will be helpful toward providing insights and stimulating research
in both areas, as has been the case for example with the connection, developed
by Kimeldorf and Wahba [6] - [8] and Weinert and Kailath [9] [10}, between
Bayesian estimation of stochastic processes and interpolation and smoothing by
splines.

We do not discuss the generalization of our results tovthe Lg spline

case since it follows from the considerations available in the




literature [4] [11] at the expense of complicating the notation.

Since [1] appeared, Weinert and Kailath have made interesting contributions
[9], [12] to the problem discussed here in that they consider the case of an
Lg-spline generated by a single high order differential operator and use a

reproducing kernel Hilbert space approach to compute the minimum energy control.

2. Problem Statement

The output vector y(t) = col (y](t), eeny yn(t)) of the composite continuous-
time, continuous-state, linear, time-varying, finite-dimensional system under
consideration is assumed to satisfy a vector differential equation of the form

Ly(e) = u(t), 0< t< a<e®, (n

where u(t) = col (u] (t), ---, up(t) ) €RP p<n, and L isa pxn

matrix with elements Eij , i=1, ..., p, j= 1, ..., n, of the form
. m_ ~ k
L.. y.(t) = Z 4., (t) Dy.(t), D= d/dt, (2)
i) k=0 Ik J
where m is a positive integer and 2 ijk are real-valued functionson [0,a],

the conditions on which are to be stated in connection with (6).

We suppose that we are given the performance index

a
{(u) = f uT(t) R(t) u(t) dt, (3
0

where the superscript T denotes the transpose,

R(E) = M (D) M(D), )
M(t) is a pxp matrix of full rank over t € [0,a], with elements in ¢"fo, 3],
and such that

L=M) L (5)
has the following properties: in the ijth element Lij of L, which is of the form

p ~
= 2
Lij s=1 Mis(t) sz
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1ijk(.) are real-valued functions belonging to ck[0,a] and &ijm (.) is

uniformly bounded away from zero on [0,a].
Suppose finally that we are given a set of values
Y= {yleRrR": i=0,1, ..., N}, (7
as well as a mesh
A=t0<t]<..,<rN, (8
where t 4 E 0< t, and ty < a= tN+1'
The problem under consideration may be stated as follows:
Problem 1: Find u* which minimizes the performance index | (u), defined by
(3), over all u GL% (O,a;ﬁ under the differential dynamical constraint (1)

and the output constraints

Y(ti) = Yi, i = O, 1, .., N« €9)

3. Physical Interpretation

Before we go any further, it is worth seeking the meaning of the equations

(1) in terms of an actual system. For this purpose, consider the system of

p single-input single-output systems, interconnected as in Fig.1, described
by the set of equations

r.
t

P, z.(0)z  ajj () pd zi () = uj () +w;(t),
j=0
i=1, ..., p, (10)

where r; are nonnegative integers, a are appropriate real-valued functions

1
on [0,a], uj are the controls whose energy (i.e., square of the L? (0,a) -norm)

is to be minimized, and w; are inputs from an existing compensator.

#I;%(O,a) is the linear space of p-tuples of elements of L?(O,a).




With the notation

= di P, «v., P ‘ 11
z = col (z], -ee5 2Zp) a2
w = col (wy, ..., Wp), (13)

(10) may be rewritten as
Pz=u+w. (e
Similarly, the dynamic compensator equations may be written as
Qy(t) = B(t) z(t) (15)
where B(t) is a time-dependent n x p reél matrix of rank p,

Q = diag (Qj, ---» Qn) (16)
9]
Qj vj(t) =  gjq(t) DY yj(0), j=1, ..., m, an

aj are nonnegative integers, and gjq(') are appropriate real-valued functions
on [0,a].
The output y of the compensator is connected to the input of the systems
being controlled by the interconnection pxn matrix C(t), that is,
w(t) = C(t) y(t) | (18)

Now (14) (I5) » and (18), together, are equivalent to (1) if we set

L="p 8T BN~ 8T(HHQ - c(t). (19)

4. An Auxiliary Problem and Its Solution

Returning to our original question, it turns out that it pays to formulate
the problem,which we are considering, in the y-space (output space) rather than in the
u-space (input space), for then the results and insights from the spline theory
can be brought to bear upon the problem solution. This is éxactly what we now

proceed to do.




In fact, substituting (1) in (3) and using the notation (5), (3) may
be rewritten in the form

1(y) = jz (Ly() (L y(8)) de. (20)
Also, let Hk denote the linear space of real-valued functions f on [0,a] such
that Dk-]f is absolutely continuous and Dkf € £Z(O,a\); and denote by H: the
linear space of n-tuples of functions in H". Then Problem 1 may be reformulated
in the output space as follows:

Problem 2. Find y* which minimizes 1(y) defined by (20) over all y € H:
under the output constraints

Yt =y, =0, 1, .., N 1)

The solution to the above problem is embodied by the following theorem,
which represents a generalization to splines generated by matrix differentialA
operators of a wellknown result [5, Chap. 6] for splines pertaining to scalar
differential operators.

Let us define the formal adjoint of L as the nxp matrix L* whose ijth
element, i = 1,..., n, j=1, ... , p, is

L*ij = (Lji)*’ (22)
where (Lji)* is the formal adjoint of the element Ljiof L, i.e.

n k -k

(Lji)*(-) = kio (<" D (’f/jik(t) ). | (23)

Theorem 1. The solution to Problem 2 always exists. It is unique if
and only if

N(L) N Q=9 (24)
where N(L) is the null space of L, Q is the set

Q=(feH :f(t)=0, t€b}, . (25)
and & is the null subspace. Then the solution S(L,A,Y;.) to Problem 2 is

the unique function y* satisfying the following set of equations:




(a) L¥L y*(t) = 0, to <t< t., i=1, ..., N; (26a)
B y*(t) =y, =0, 1, ., N (26b)
(©) y¥ € c2m-2, j=1, .e., on; (26¢)
and (d) L y*(t) = O, 0<t < ty and tN <t <a. (26d)

(Such a function y* is called a generalized L spline interpolatingY over 4).

Sketch of the Proof. The proof of the above theorem is based on the same

arguments as the ones for the scalar case [5, chap. 6], the extensions needed

to validate the results being merely of a formal nature. For this reason, we

omit the details and only sketch the steps involved in the generalization.Fi~-
rst,one writes the vector version of the scalar Lagrange identity proved in

[13, p.86]. Then one uses this vector Lagrange ideptity to prove a vector

version of the '"first integral relation" [5, p. 195] which then is used to
establish a vector version of the'minimum norm property"[5, Chap. 6]. By

this property, y* satisfying (26a) through (26d) minimizes (20) over Hﬁ,

under (21). The proof that the uniqueness of y* is equivalent to the satisfaction

of (24) is identical to that for the scalar case [9 J[nl.

5. Return to Problem |

From the preceding it is clear that now only a small additional step
is needed to bridge the gap between the solution to Problem 2, expressed by
(26a) through (26d), and that to Problem 1. The required step consists of (1)
and (5) which, together, send y* to u¥.

Formally, we summarize the above considerations as

Proposition 1. The solution to Problem 1| is determined by the set of

equations (26a) through (26d), satisfied by y*, and the equation
wo= m L y*. (27)
It is immediately clear that if we eliminate this last equation by substituting

it in (26a) through (26d), the above proposition is equivalent to




Proposition 2. The solution u* to Problem 1 isdetermined by the set

of conditions:

(a) L* M ux(t) = 0, ti-l <t < ti’ i=1, ... , N; (28a)
) Mo € L Ly = y €H L y(t) =y, i=0, ..., N}; (28b)
(e) uf € ™2 5=, P (28¢)
(d) u¥ =0, 0<t<t,and tySt<a (28d)

In reference [1], the result of the present paper was formulated in
the form of Proposition 1. Recently, Weinert and Kailath,in their work[12] with
Lg splines pertaining to scalar operators, essentially presented the above result
in the form of Proposition 2, indicating some of the advantages of looking
at the solution this way. Functions u* satisfying a system such as (28)
belong to the general class of "' LM splines' introduced and discussed by

one of us elsewhere [l&].#

6. Examp les

To illustrate the results presented above, we give two simple examples for
which p = 1, and n =1 and 2 respectively.

Example 1

Consider a system described by the scalar differential equation

y(t) = u(t),” = d/dt,0 < t < a, (29)
subject to the constraints (9).
Then,
“(t) = [

Y IR v (=t ) + y(t, (e, -0)],
ti StE<tLi= 1., (30a)

* 0

y (t) =y ,0=<¢t< tg (30b)

*

y (t) = yN,tN <t <a. (30c)

and the optimal control is given by

#Note that the symbol M in the denomination of an LM spline stands for a differential

operator and not the matrix M appearing in the present paper.




energy control problems and spline interpolation.

* B 1 .
u (t) = e (y(ti) - y(ti_])),ti_] =t <t.,i=1,...t
%
u(t)y=0,0 £t < to,tN St <a
Example 2
For the system
y(t) + 5y(t) + 4y(t) = u(t),0 <t <1,
subject to the constraints
y(ih) = 10 sin(i10h),h = 0.1,i = 1,...,10,
we have
% 4 o &
y (t) = ZA(i,k)e " ,(i-Dh <t <ih,i=1,...,10,
k=1
where
[(1/],0’2,(1/3’(1’4} = {-]’-4:];4}a
and A(i,k) are determined by the set of conditions (26).
Hence, the resultant optimal controller assumes the form
4 ot
uk(t) =X akA(i,k)e ,(=-Dh =t < ih,i=1,...,10,
k=3
where {A(i,k):i = 1,...,10,k = 3,4} are given in Table 1.
TABLE 1
i 1 2 3 4 5 6 7 8 9
A(i,3) 0 -.117 .080 .028 .036 .028 .033 .006 .087
A(i,4) O .022 -.005 .000 .000 .000 .000 .000 -.001

Conclusion

(31a)

(31b)

(32)

(33)

(34)

(35)
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A meaningful relationship has been established between a class of minimum

time systems.

Even though the results

presented here are for finite-time systems, they easily generalize to infinite-
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